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Abslraet. This paper is devoted to the problem of constructing integrable mechanical 
systems withtwo degrees offreedom whose Lagrangians contain terms linear inthe velocities 
and whose second integrals have the form of polynomials of the second degree in the 
velocity variables in which the coefficients depend only on the coordinatcs. The solution 
of this problem is known only in the case of reversible systems, far which the linear terms 
do not affect Lagrange's equations of motion. 

Using the method developed in a previous paper we classify all the possible irreversible 
systems into three types according to a certain normal form of the line element an the 
configuration space. The most general systems ofthe first two types are constructed. Several 
many-parameter systems of the third type are also found. 

Some of the new cases are found to be generalizations, by the introduction of some 
additional parameters, to well known integrable problems i n  panicle and rigid body 
dynamics. Mechanical interpretation is also given for some other cases. 

1. Introduction 

The mechanical system under consideration here is the system with two degrees of 
freedom characterized by a Lagrangian of the form 

2 2 

r, j=, i = l  
L = f  g..q.q.+ 'I a I 1 g,q, - v 

where g,, gi and V are functions of q,  , q2 only. 
The Lagrangians which contain terms linear in the velocities are met in many 

different situations. Some examples follow. 
(i) When the order of an arbitrary natural system with n degrees of freedom and 

n -2  cyclic coordinates is reduced according to Routh's procedure. An example is the 
rigid body fixed from one point with a symmetric rotor fixed in it by means of cylindrical 
hinges, if this sytem, called a gyrostat, moves under the action of forces which have 
an axis of symmetry that passes through the fixed point (see e.g. [l]). To this type also 
belong systems with intrinsic cyclic motions corresponding to an infinite number of 
degrees of freedom. A rigid body moving in a liquid [21 and (or) containing holes 
completely filled with liquid in vortex motion is an example [3]. The same applies for 
systems whose components are forced to perform cyclic or stationary motions (motors, 
forced motions of liquids in circuits, etc.). Forces that give rise to linear terms in (1.1) 
due to any of the above reasons are usually called 'gyroscopic' (e.g. [4]). 
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(ii) When the original natural system has some electrically charged components 
which move under the action of a stationary magnetic field (Lorentz interaction). This 
is the case of forces 'with velocity-dependent potential' [5], 'with zero potential' [6] 
or 'with generalized potential' [7]. 

(iii) When the motion of the system is referred to rotating axes. That is, the case 
of 'inertial' or 'Coriolis' forces 14-71, 

Depending on the origin of the linear terms in ( l . l ) ,  the mechanical system under 
consideration is sometimes called 'reduced', 'non-natural', 'generalized conservative' 
or 'a system with velocity-dependent potential'. We shall call it a 'generalized-natural' 
system with no regard to its origin. This conforms with the well agreed definition of 
a natural system (e.g. [6-91) when g, = g2 = 0. It also leaves the general names above 
for the cases of more general dependence of the Lagrangian on the velocities. 

Now, we shall consider some useful properties of our system. 
1 ; )  I r a n  12-  - 2 -  / a m  thn- I1 1 )  ,-am he . . z r i + + ~ n  OI 

\L/ I I  Y61,"Y2-"b2,"LjI ,  L l l l l l  \"'I U"., " C  I * L L L L C L I  "a 

L=Lo+d/d f f (q , ,  q 2 )  

where Lo has no linear terms. The equations of motion derived from the Lagrangians 
L and Lo are the same. They are also invariant under time reversal. This means that 
if q ( t )  is a solution then q ( - f )  is also a solution. In that case, we call our system 
':eve:sib!e', ethe:;vise, ca!! it 'irre\rersib!e' e.g. 191). is obyi~cs !ha! these 
terms should not be confused with the thermodynamic irreversibility. 

(ii) According to a theorem of Birkhoff [lo], one can always find isothermal 
coordinates x,y (say) in which the Lagrangian (1.1) takes the form 

L = $ A ( X z + j 2 )  + [ t i  + 1 2 j  - K (1.2) 

The "PW LagrEngiE" invo!ves four functions of the position instead of six in (I.!). 
introducing a new independent variable T by the relation 

d t=Ad . r  (1.3) 

we can replace (1.2) on any fixed level of its Jacobi integral? by 

L = i(?+ E') + I$ + 12j+ U ( 1.4) 

where 

U = A ( h  - V) (1.5) 

h is Jacohi's constant and the circle denotes differentiation with respect to T. Then, as 
was noted by Birkhoff, the equations of motion will have the form 

(1.6a) 

2 2 + j 2 -  2 U = 0 (1.66) 

where 

t The Hamiltonian of the system expressed in Lagrangian variables. It coincides with Ihe total energy only 
for reversible systems. 
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Note that in (1.66) a superfluous Jacobi constant of (1.6a) is set equal to zero, 
while the Jacobi constant h for the original system (1.2) enters as a parameter in the 
new potential -U. Note also that the system is reversible if and only if R = 0. 

Equations (1.6) contain only two functions R and U and hence they furnish the 
simplest basis for the search of additional integrals. 

(iii) The last form (1.6) of the equations of motion is invariant under conformal 
mappings of the complex plane z = x+iy  [6,8-101. In fact, a change of the variables 

transforms the system (1.6) to the form 

(1.9a) 

(1.9b) 

where 

and primes denote differentiation with respect to 4. That is one more advantage of 
equations (1.6) over equations of the Lagrange or Hamilton types. 

The object of the present paper is to construct integrable generalized natural 
mechanical systems which admit a quadratic additional integral. This problem has a 
long history, mainly concerned with the reversible case R = 0 (see e.g. [ 1 I]). Our main 
interest will therefore be directed towards the irreversible case. 

Birkhoff raised and completely solved the problem of finding all possible pairs U, 
R for which the system (1.6) admits an additional integral linear in the velocities [lo]. 
He has also found the general expression for the function U which allows the existence 
of a quadratic integral in the reversible case. 

The special case when A = constant and R = 0 characterizes the problem of motion 
of a particle under the action of potential forces in the Euclidean plane. It was treated 
much earlier. Bertrand [ 121 reduce? it to a single partial differential equation which 
was solved later by Darboux [ 131 (see also Whittaker [7]). Degenerate cases overlooked 
by Darboux were noted by several recent authors (see e.g. Hietarinta [ll]). 

In our work [ 11 a method was developed for the construction of mechanical systems 
for which a conditional first integral exists in the form of a polynomial of arbitrary 
degree in the velocities. This method, which generalizes that of Birkhoff, has proved 
effective in constructing several, in part new, integrable problems, in the dynamics of 
particles and rigid bodies, for which the degree of the additional integral ranges up 
to the fourth [ I ,  141. 

A similar method was developed independently by Hall [15] for the case of plane 
motion of a particle (A = I ) .  In view of the complexity of Hall's equations, his method 
was used only in the reversible case (cl = 0). In our method, additional transformations 
of the type (1.8) are used. This leads to significant simplification in the form of the 
governing equations and of their solutions. 
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In section 2 below, we derive the equations which determine all the possible 
mechanical systems of the type under consideration which admit a quadratic second 
integral. However, we consider further only the cases when that integral exists on all 
the levels of Jacobi's constant. These cases admit a simple classification into three 
types according to the structure of the function A which determines the metric of the 
configuration space. These three types are investigated in sections 4, 5 and 6, respec- 
tively. A brief note concerning the reversible case is given in section 3. Finally, we 
devote a separate section to the discussion of some problems in rigid body dynamics. 
We reduce their equations of motion to the normal form (1.9) and explore their 
connection to the results of the former sections. 

2. Formulation of the problem 

Now we consider the equations of motion of our mechanical system in the form (1.6). 
Let these equations admit an additional integral in the form 

3 = AP+ ~ i j +  cj2+ oi+ ~ j +  F (2.1) 
where the coefficients are functions of x and y only and do not depend on the parameter 
h. The form of the integral (2.1) can be simplified as follows. 

(i) Using (1.66) we eliminate 3' to get 

3 = A , ? ~ +  E;+ ~ i +  E ~ + F ,  (2.2) 

where A, = A- C, F, = F+2CU. Note that Fl depends on h linearly. 
(ii) Noting that 

(d + 6j)'= ( a i +  b-)' 
= ( a 2 -  b2)J2+2abi$+26*U 

we can always reduce the integral to the form 

3 = (d + bf)'+ D$+ E$+ F2 

where ( ~ + i b ) ~ = A ~ + i B ,  and Fz is also linear in h. 

and equating to zero the coefficients of the highest powers of 9 and 9 we get 
I:::\ ,I:'T~-~-+:~+&... I I  1\ ..,irh m.-nrt t_ - .,,.A +ha -nslr+innr nf mntinn 11 6) 
,A,., U'L'CLC.""L".~ I&.-', I*.L.L . b " y ' L L  L V  , "1L'L6 111* -y""..".." ". ...-..-.. \_.", 

Ja Jb -+-=(I 
Jy Jx 

0 
Ja Jb 
Jx Jy 
_--= 

i.e. a + ib  is an analytic function in a certain domain of the plane of the complex 
varlab!~ I We now define the new coordinates 5 and n and the new independent 
variable i as in (1.8) such that 

This transforms the equations of motion to the form (1.9) and the integral (2.3) to  the 
final form 

(2.5) 

It suffices, therefore, to consider systems of the type (1.9) which admit an integral of 
the form (2.5) where P, Q and R are functions of 5.7; P, Q are independent of h 
while R depends on h linearly. 

3 = ;e2+ PC + Q?' + R. 
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It is easy to deduce the set of conditions for (2.5) to be a first integral of (1.9) i? 
the form of four equations which must be satisfied by the four functions P, Q, U 
and 6: 

P*-Q,,=O P,, + Qs =6 
12.6) 

Pfic + Qfi , ,  + 2Q,,fi = 0 ( h P ) , + ( h Q ) , +  f i c , , = O  

while for R we get the quadrature 

R = 6 P  d v  -(no+ f i t )  dt .  (2.7) 

The general solution of (2.6) determines all the possible mechanical systems whose 
motion is described by equations of the type (1.9) and for which an additional integral 
of the form (2.5) exists. Generally speaking, this integral is conditional, i.e. it is valid 
only on a single level of Jacobi's constant which can be taken as the zero level. These 
systems can be generalized by the introduction of the transformation (2.4) followed 
by  a general point transformation to generate all the possible cases of the original 
system (1.1) which admit a quadratic integral of the most general possible form. 

On the other hand, the transformation (2.4) changes the Lagrangian (1.4) to 

1 

L = f(c2 + vt2)  + i, c+ iZvi+ ir (2.8) 

where i,, 7, satisfy 

and the Jacobi constant of the resulting equations is set equal to zero. Comparing (2.8) 
with the expression for 6 in (2.6) we find that a possible Lagrangian is 

i = ;(e"+ qf2) + P c  - Q v ' +  6. (2.9) 

All other possible Lagrangians differ from this only by an expression df/di, f is an 
arbitrary function of 5 and 7. 

The system (2.6) can be reduced further by the substitution 

P = 6 n  Q = &  6 = 6ff + h? (2.10) 

to a pair of equations 

&irf t +*ii7 + 2 fi& = 0 (2.1 1 a )  

(2.llb) 

in the two functions $ and 6. 
We have not yet been able to find the general solution of (2.11) and hence to 

determine all systems that admit a quadratic integral at least on a single level of Jacobi's 
constant. However, a considerable simplification occurs in the most interesting case 
when the integral (2.5) exists on every level of Jacobi's constant. Noting that the 
functions P, Q and hence 6, do not depend on h, and substituting for U in (2.11) the 
expression ( h  - V) and equating to zero the coefficients of different powers of h, we 
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arrive at the following system: 

i r 7 = 0  

4Jc + &i7 + 2im, = 0 

&Vr+ 4*v, = 0 

(2.12a) 

(2.126) 

(2.12c) 

(2.12d) 

It can be shown that if the integral (2.5) exists just for two different values of h then 
(2.12) are satisfied and the same integral is valid for all other values of h. 

The general solution of ( 2 . 1 2 ~ ~ )  is 

i= d A ( O - d v ) I  (2.13) 

where A, p are arbitrary functions and E is an arbitrary constant introduced for future 
convenience. This means that a mechanical system can admit a quadratic integral only 
ifthe metric on its configuration space admits reduction in some generalized coordinates 
to a Liouville metric, including two possible degenerate cases when one of the two 
functions A, f i  is a constant o r  both of them are constants. The integral takes its simplest 
form (2.5) just in these coordinates. It is natural that the solution of the remaining 
equations (2.126-d) depends mainly on which of these three types the solution (2.13) 
belongs to. For the irreversible case the three possible types will be treated in sections 
4-6. We now begin by considering the reversible case. 

3. The reversible case 

When Cl = 0 we have to set 4 = 0 and hence (2.12) gives 

4dO - 42(7) 
h ( Z ) - f 4 7 )  

V =  (3.1) 

where 4, , q52 are arbitrary functions. In the variables f ,  q, 6 the mechanical system 
under consideration has the separable Lagrangian 

i = f[fC2+ qt2 ]+  h [ A  - p ]  - 4, + $2 (3.2) 

restricted to its zero level of the total energy. This is equivalent to the unconditioned 
Lagrangian 

61-42 
A - W  

L = ;(A - p)[g + 7j2] -- 

of the Liouville type. 
This result is applied to rigid body dynamics in [l]. 

3.1. The case of an Euclidean plane 

If in (1.2) we set A =  1, the original configuration space is the ordinary plane. In the 
transformed system we have 
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This means that the function z( 6) must satisfy 

which is equivalent to 

a being an arbitrary real constant. The general solution of the last equation is 

(3.3) 

where p and ya re  new arbitrary constants which can always be made real by a suitable 
change of the axes. 

Now, there is no difficulty in recognizing that 5, 7 as defined in (3.3) are in general 
the elliptic coordinates in the xy-plane with foci at the two branching points of the 
integrand. Thus we arrive in a simple and unified manner at Darboux’ result 
(erroneously attributed to Whittaker in many recent works) and its degenerate cases: 
a=O, P 2 - 4 a y = 0  and a = P = O  when (3.3) defines parabolic, polar and Cartesian 
coordinates, respectively. These cases were overlooked by Darboux. They have been 
noted much later in [16]. 

4. Irreversible systems. The configuration space is an Euclidean plane referred to 
Cartesian coordinates 

We begin by considering the simplest ease A = constant or, without loss of generality, 
A = 1 and 5 = z. It is not hard then to obtain the general solution of equations (2.12) as 

dP 
y =  * I (-ap’+p2p2+y2p+s2)’’* 

a, p , ,  p2,  y,,  y2, S,, 8, and h,  are arbitrary constants. 
Hence we obtain the expressions 

p = PYY) Q = 9’(x) 

0 = t [ 3 a ( 9 2 - P 2 ) + 2 ( P , 9 + P 2 P ) + Y I  +Y21.  

(4.3) 

This result may be interpreted as a case of motion of a particle in the Euclidean 
xy-plane. In that context, it was noted earlier [ 171. A new interpretation is given in 
section 6 below. 
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The functions p ( y ) ,  q(x) as determined from (4 .2 )  are in the general case elliptic 
with two independent sets of invariants. Apart from certain degenerate cases these 
functions are periodic and hence V, Cl are periodic functions in both x and y directions. 
Each of q ( x )  and p ( y )  has at most two real branches but at most one of these branches 
can be bounded. The last kind of branches is the most significant since a real pole of 
q or p leads to the appearance of a singular line for V and Cl in the xy-plane. 

The bounded case occurs when Q2(q)  and P 2 ( p )  have only real roots. Let us denote 

determinacy, let (I also be positive. The bounded branch of q ( p )  lies in the interval 
these roots by q , ,  q2,  q, ,  P , .  P I  and P,, where P, > p2 > P, and 4, > qz > 4 , .  For 

[ 4 3 .  qzI(1Pz.PII). 
They have the explicit expressions 

q =  q,+(q2-q3)sn2(alx, k d  (4 .4a)  

P = P ,  - ( ~ ~ - p ~ ) s n ~ ( a ~ ~ ,  k2)  (4 .46)  

where 

a : = a ( q t - q 3 ) / 4  

d = a ( p , - p , ) / 4  k : = ( p i - ~ 2 ) / ( ~ 1 - ~ 3 ) ,  

k: = ( q 2 -  q,)/(qi - q 3 )  

5. Irreversible systems: the metric has the structure of a metric on a 
surface of revolution 

Let us now choose for (2 .12a)  a solution of the form 

ii= EP(7l). (5 .1)  

This makes the metric formally similar to that on a surface of revolution, but it does 
not indicate, however, the possibility of realizing the configuration space as a surface 
of revolution embedded in Euclidean 3~ space. With this choice the solution of equation 
(2 .126)  can be written as 

where g and U are functions to be determined. Substituting into ( 2 . 1 2 ~ )  we obtain 

v =  V(*) * = 4 g +  U. (5.3) 

It remains to determine the four functions ~ ( q ) ,  g ( 5 ) ,  u (p )  and V($) from the last 
equation (2 .12d) .  Substituting into this equation we find that V must have the form 

(5 .4 )  
1 

V =  - (bJ, -$  c,JI*) 
E 

g is a solution of 

g”(5)+cog(5)  = o  
p is determined from 

( 5 . 5 )  
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and U satisfies the equation 

8(C3p3+C2p2+ C,p+ c,Ju”’(p) + 12(3c,p2+2c2p+ c l )u”(p)  

+ 6 ( 3 ~ 3 p +  cz)~’(p)-3~3t)(p)+3b = O  (5.7) 

where b, eo, c, ,  c2 and c3 are arbitrary constants. 
Equation ( 5 . 5 )  can readily be solved in terms of elementary functions. The whole 

proh!em therefore redxes to so!ving the linear ordinary differentia! equation (5.7). 
This depends totally on the coefficients cn, c, ,  c2, c, of the polynomial under the square 
root in (5.6). Let us denote by p l ,  p2 and p3 the roots of the same polynomial. We 
get the following cases. 

5.1. Theeasec,#O 

In this case, depending on the relative values of the three roots, the solution of (5.7) 
can be written as: 

(9 for ~ ~ f ~ ~ # p ~ ,  

( 5 . 8 ~ )  

where each of the arbitrary constants c4, cS and c6 is taken to be real or imeginary PO 

that the corresponding term in ( 5 . 8 0 )  is real. I f  the polynomial has only one real root 
(p3  say), then the roots p,  and p2 are complex conjugate and so we must take the 
arbitrary constants c,, c5. 

b 
c3 

U = -+ C , G  + c 5 V F z  + Cb\ /L - - ILJ  

(ii) for C L , = C L ~ ~ C L ~ ,  

b 
c3 

(iii) for p,  = p2= fi3, 

(5.8b) 

5.2. The case e, = 0, c, # 0 

The polynomial has only two roots p,, p2 and the solution of (5.7) is 

The constant c, is real while c5, cb are taken as above so that U is real 

5.3. The case c ,  = c, = 0, c, # 0 

(5.9b) 

(5.10) 
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5.4. The case c3 = c2 = c, = 0, c, # 0 

In this case 

(5.11) U =  - - + c , + C S ~ + C 6 p .  bF' 2 

16c0 

The solution of the problem of the present section is now complete. However, we 
have not yet found physical or mechanical interpretation for all the cases obtained. 
Some special versions can be interpreted as problems of motion of a symmetric rigid 
body or of a particle on a smooth surface of revolution. We give here an interpretation 
for the case that corresponds to the choice ( 5 . 1 1 ) .  

First we note that for general values of the parameters c", . . . , c,, the metric 
characterized by the relation (5.6),  namely 

ds2=  e w ( d ~ 2 + d ~ 2 )  (5.12) 

has the Gaussian curvature 

1 
= -- (3c,PL'+2c2p+ c , ) .  (5.13) 

It is obvious that the case (ci  = cz = e ,  = 0) is the only one when the configuration space 
of our mechanical system can be interpreted as an Euclidean plane. The coordinates 
6, 7 are related to polar coordinates in that plane. In fact, performing transformation 
to the z-plane 

z = e  - i 4 < / 4  (5.14) 

and using the above formulae we arrive at the problem of motion of a particle described 
by the equations 

x+nj = -V, j ;  -ax = - v, (5.15) 

& 

where 

V = Ax+ By - (crZ+ abr4+ a2r6)  

n = 2 b + 6 a r 2  

(5 .16a)  

(5.166) 

A, E, a, b and c are arbitrary constants and r = 121. The additional quadratic integral 

and effecting the transformation (5.14).  We write down this integral in the following 
final form which can be checked directly: 

3 = ( x j  - yx - b r z - ~ a r 6 ) [ a ( x j  - yx - brZ -:a**) - cl 

FA- +hi-  --,.hL- ha n-rilsl ~~..-+---.-+.d ..,i+h +hn nf +hp fArmlllna ~i~~~~ 9hn.m 
L". L l l l D  y'"",L,,, .,'Llh "L La"".' C Y L L I L l U l L r Y  W.L.. L..* "a- "L L1.U ."..I.".... E..'.' ..--,I 

+:(A$ - E x )  - ( b  + ar2) (Ax+  B y ) .  (5.17) 

The potential V can be considered as due to a combination of uniform and central 
fields. The function Cl can be understood as the intensity of a magnetic field, assuming 
the particle to have an electric charge. The constant part of n also arises as a result 
of uniform rotation of the plane about its normal. The integral (5.17) degenerates into 
a linear one when a = 0. 
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6. Irreversible systems. The metric is a noo-degenerate Liouville one 

Now we take the solution of (2.12a) in the general form (2.13) with A’(.$) p‘(7)ZO. 
In this case we can use A, p as variables. Let 

A”(.$) = F(A) p’’(7) = G(p)  (6.la) 

so that 

(6.16) 

Equations (2.126) and (2 .12~)  can be written as 

4 p - 4 ~  + ~ ( A - P ) ~ A ~  = O  (6.2a) 

(6.26) + 4A v, = 0. 

The equation of the characteristics of (6.26) is 

dA -4* d p  =O. (6.3) 

It is easy to verify, by virtue of (6.2a), that (6.3) has the integrating factor (A-p). 
Hence the potential V can be expressed in the form V = V ( $ ) ,  where $ is connected 
to 4 by the relations 

$ A = ( A - - I L ) + *  +, = - (A - F M w  (6.4) 

$* - Q++ 2(A - IL)JI+ = 0. 

and hence satisfies the equation 

(6.5) 
The function $ will be used below instead of c$. In particular (2.10) is replaced by 

Now we provide an interesting interpretation of the functions 4 and +. In fact if 
we introduce new variables p = A - p, Z = i(A + p )  then (6.2a), (6.5) and (6.4) reduce 
to 

1 

P 

1 

P 

+- @J0 + 422 = 0 (6.7a) 

-- +n + $22 = 0 (6.76) 

(+Iz = -& (-i+)o = ~ 4 ~ .  ( 6 . 7 ~ )  

Moreover, we can imagine Z to be the axis of cylindrical coordinates in some 
(complex) 3~ space and p as the radial distance of the current point from that axis. 
Equations (6.7) are exactly those satisfied by the velocity potential 4 and Stokes’ 
stream function (-i+) of a vritual flow of an ideal incompressible fluid, symmetric 
around the Z-axis (see e.g. [18]). 

This formal analogy makes it possible to write down some simple solutions of (6.6) 
inspired by known axisymmetric hydrodynamic flows. 
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We note that, in addition to equation (6.5) for $, only one equation remains to he 
satisfied by the four functions $(A,  p),  F(A), G(w) and V ( $ ) .  That is (2.12d) which 
now takes the form 

6.1. The analogue of a uniform flow 

We hegin with the simplest hydrodynamic problem, namely, we shall consider a uniform 
flow in the Z-direction. This corresponds to the choice (compare e.g. [IS]) 

+ = J ( A  + P )  JI = ~ J ( A  - p)2 (6.9) 

where J is a constant. It can be easily seen that this choice satisfies (6.8) if and only if 

F(A)  = n A 3 + P , A 2 +  y ,A+S,  (6.10) 

G ( ~ * ) = - a w ’ f P ~ p ~ + ~ ~ p + + S ~  

where a, p , ,  p2, y, ,  y 2 ,  S,, 6, and h,  are arbitrary constants. This also gives 

(6.11) 

The expressions (6.10) and (6.11) characterize a mechanical system which can he 
obtained from that oi  section 4 by a change of time dr + dt / (A  - p )  and interchanging 
h, hi. 

As in the previous sections we shall try to obtain a mechanical interpretation of 
some special cases of this result. First, it will be useful to calculate the Gaussian 
curvature of the configuration space whose metric is ds2 = E ( A  - p ) ( d ~ ’ + d ~ * ) .  We find 

J 
2 

n=-[301(A2-p2)+2(PJ +P+)+ YI + Y2I. 

So we recognize the following simple cases: 
(i) Let p, + p 2  = y,  + yz = 6, + S2 = 0, 01 = 4, E = 1 (say) and let the roots of the 

polynomial F(A)  all be real and distinct. Then K = 1 and the configuration space can 
be realized as a sphere of unit radius. The variables A, p are the coordinates of confocal 
cones on that sphere. So we have an integrable case of motion of a particle on the 
sphere under the action of certain potential and gyroscopic forces. However, a more 
interesting interpretation belongs to rigid body dynamics. The equivalence of the two 
problems was studied in [19]. 
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(ii) Let 01 = p,  + p2 = y ,  + y2 = 8 ,  + 8, = 0, and let F ( A )  have two simple real roots. 
In that case K = 0. The configuration space can be identified (but not uniquely) with 
the Euclidean plane. Going back to Cartesian coordinates x, y we find that for this 
mechanical system the equations of motion can be written in the form ( 5 . 1 5 )  with 

a 
V=- n =constant 

rI  r2 
(6.13a) 

where a is a constant and r , ,  r, are the distances between the particle and two fixed 
points (*c,O). This system admits the integral 

5 = [(x - c ) j - y X l [ ( x +  c ) j  - y x l + n [ c 2 ( y X + x j )  + ( x 2 + y 2 ) ( y X  -xY)l 

6.2. Some cases with algebraic J, 

The rest of the present section will be devoted to the construction of some classes of 
integrable mechanical systems for which the function J, is symmetric in the arguments 
A , p  that depend in a homogeneous manner on certain arbitrary parameters. The 
functions F ( A )  and G ( p )  are rational. The results given below were found by trial, 
inspired partly by the structure of some known integrable problems in rigid body 
dynamics. It was not always easy to investigate equation (6.8) even for relatively simple 
choices for $, F, G and V. Thus, we do not claim, as in the previous sections, that we 
give here all the possible integrable systems of the type under consideration. 

For brevity, each integrable system will be characterized by the corresponding 
functions $, F, G, V and 0. This will be sufficient to construct the original Lagrangian 
of the system as well as its quadratic integral with the aid of the formulae in 
section 2 and at the beginning of the present section. 

6.2.1. The generating case. The first of our systems is characterized by the choice of 
a solution of (6.5) in the form 

$==ZJJ(A-a)(p-u)  (6.14) 

where U is a real constant. Substituting in (6.8) we obtain the equation 

(6.15) 

where 

5 2  

0 - p )  
H = -  {(A -p)'[F'(A)+ G " ( p ) 1 + 6 ( A  - p ) [ F ' ( h ) +  G 'b ) I  

+12[F(A)+  Gh)1}. (6.16) 

It is obvious that H must not have a singularity at A = p. The necessary condition for 
that is 

G(LL)=--F(LL). (6.17) 

On the other hand, H is a function only of $, so that 

(6.18) 
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To solve this equation we first operate on both its sides by 

We get the much simpler equation 

( - a) F"'( CL) + F " ( ~ )  = ( A  - a ) P I (  A )  + F "( A )  

whose solution is 

(6.19) 

(6.20) 

It is easy to verify that this solution also satisfies (6.18) and hence it gives the general 
solution of that equation. 

a differential equation in V whose solution is 

b 
A - a  

F ( A ) =  a5AS+a,A4+alA't a,A2+ a,A+a,,+-. 

Sobs!i!oting (6.20) and (6.17) into (h . !S )  and taking (6.14) into 2ccount we abtain 

where c is a new integration constant. Also from (6.6) we get 

R = ; J ( A  -/.)J( A - a ) ( p  - a) 
a , n s + a , a 4 + a , a 3 + a z a 2 + a , a  + a,, 

(A - a ) 2 ( / . - - ( 1 ) 2  
a5[2(A + p )  + a ]  + a 4 -  

1 2b(A + p -2u)  
(A-a) ' (p-a) '  ' 

- 

(6.21) 

(6.22) 

A possible Lagrangian for the above system can be written as 

Special versions of this result are given interpretation in particle dynamics and in rigid 
body dynamics in section 7. 

6.2.2. A case of a superposition of terms. The previous integrable case involved 10 
arbitrary real parameters. It is interesting to note some variations of this system which 
involve the same number of 10 parameters. In all of them we have 

F ( A )  = a5A5+. . . + a ,  GbL) = -F(/.L) v =  -a,+2/8&. (6.24) 

The most general one of these systems is characterized by the choice of $ as a 
linear combination of five terms of the type (6.14). That is 

5 

j = l  
+ = 2  2 J , J ( A - a j ) ( p - a j )  (6.25a) 

provided that a, ( j  = 1 , .  , . , 5 )  are the roots of the fifth degree polynomial F ( A ) ,  and 
3 are arbitrary constants which may he chosen real or complex (conjugate in pairs) 
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in such a way that I) is real. The above form of + leads to the following expression 
for C L :  

5 

fl = + ( A  -p) 1 J J ( A  - a; ) (p  - a j ) ’ [ 2 0 5 ( A  +p)+a,a;  + 041. (6.256) 

6.2.3. Some limiting cases. From the last case we can obtain several limiting cases by 
coalescing together the values of the different parameters a, in various ways. For 
example, if two of the roots are equal, say ab= a,, then the last term in ( 6 . 2 5 ~ )  should 
be replaced by its derivative with respect to a4. Thus we obtain the integrable system 
identified by 

;=I  

For this system we have 

( 6 . 2 6 ~ )  

(6.26b) 

X [2a5(A2+p2+ Ap)+(a4- a,a,)(A + p )  -2a,(a4+2a,as)] . ( 6 . 2 6 ~ )  I 
In the sense of the hydrodynamic problem, the last term in (6.260) (multiplied by 

-i) is just the Stokes’ stream function for the flow due to a source at the point p =0, 
Z = 2ia,. Each of the other four terms is Stokes’ function for a more complicated flow 
due to a half-line source and a half-line sink separated by the point 2i5  on the Z-axis. 
We can still obtain more limiting cases by coalescing more roots to CY, again or to 
other roots. 

A root n repeated (j+ 1) times leads to the replacement of a number of j terms in 
( 6 . 2 5 ~ )  by terms of the form 

J ah 
x = l  z J ~ & ( A - ~ ) ( P - ~ ) .  

For example, let 

F ( A ) =  a s ( A - a ) ’ ( A - a ) ( A - b ) .  

This means that, in addition to the two types of terms that appeared in (6.26a), the 
function I) will contain a term like 

J A A  - d2 
( A  - c ~ ) ~ ’ ~ ( p - a ) ’ / ~  

and this results in a term 

J4a5(A-pL) ,/2 [ 2 ( A 3 + A 2 p + A p 2 + p 3 )  - ( a  + b)(A - p ) 2  4(A -a)’/2(p--ru) 

- 2 a ( A  +p)’+ 12a2(A + w )  -8a21 

in the expression (6.266) for fl. 
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We have not yet found a concrete mechanical interpretation for any of the above 
integrable cases. The first step in that interpretation is a geometrical one. That is to 
identify a configuration space with the Liouville metric 

ds2 = & ( A  - p) (d t2+  dv2)  = & ( A  - p )  [%-%I (6.27) 

After that we dress this space with the potential and gyroscopic forces characterized 
by the two functions V and 0. For the system of section 6.2.2 (and also section 6.2.1 
if b = 0), F is a polynomial of the fifth degree and hence 5 and 7 are hyperelliptic 
integrals in A, p, respectively. When F has two equal roots, as in (6.26). these integrals 
become elliptic of the third kind. To this type belongs the metric on the reduced 
configuration space of the problem of motion of a rigid body about a fixed point under 
the action of axially symmetric forces (see e.g. [1,4(c)]). As we shall see in section 7, 
the case characterized by (6.26) can be identified, after some restrictions on its para- 
meters, as a very well known integrable case in rigid body dynamics. 

6.2.4. A transformation of the above cases. Here we note a striking property of the 
basic system of the present section, namely the system described by the Lagrangian 
(6.23). For the sake of clarity we set o =  0, so that we consider further the system with 
the Lagrangian 

bJ2 a,J2 C _- 2+-Ap- -  
 EA p 2~ AcL 

where 
b 
A 

f ( A )  = aSAS + a,A4 + a3A3 + a2A2 + a,A + a,, + -_ 

Transforming to new variables U, U, T according to the relations 

dt = (2) d T. 
1 1 

A = -  p = ;  
U 

(6.28) 

(6.29) 

On a fixed level h of Jacobi’s constant of the system, we reduce the Lagrangian 
(6.28) to 

a,J2 bJ2 h _- ,+-uv+- 
2&U v 2& U0 

where 

a5 f (U) = bu5+aou4+a,u ’+a2u2+a3u+a4+-  
U 

(6.30) 

and the asterisk denotes differentiation with respect to T. Thus, the structure of the 
Lagrangian (6.28) is invariant under the change of variables (6.29). All that happened 
is that the ordered set of parameters ( a 5 , .  , , , a , , ,  b )  is reversed and the two arbitrary 
constants c and h are interchanged. Jacobi’s constant h for the old system enters as 
a parameter in the potential and the parameter c becomes Jacobi’s constant for the 
new system. 
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The two problems characterized by the Lagrangians (6.28) and (6.30) are completely 
equivalent from the mathematical point of view. A special version of one of them 
always transforms to a special version of the other. However, the two corresponding 
problems can be physically quite different. As we shall see in section 7, we can use 
this result to establish equivalence between a problem of motion of a rigid body and 
a problem of motion of a particle on a smooth ellipsoid. The same transformation can 
also be applied to other cases of the present section. 

6.3. Some cases of polynomial J, 

In the present subsection we introduce certain integrable systems for which all the 
functions J,, F, V, and 0 have the simple form of polynomials in A and p. 

(i) Let us take a solution of (6 .6)  in the form 

J I = J ( A + w )  J = constant. (6.31) 

Substituting into (6.8) we get 

(6.32) 

The !ef!-hi?nd side of !he !IS! eq”2tion is B fcx t ion  on!y c?f (A+;?.). Thcs from the 
right-hand side we obtain 

[F“‘(A)-  F”’(p) ] (A - /L )~-  12[F”(A)-  F “ ( p ) ] ( A  -p )2  

+ 6 0 [ F ’ ( A ) - F ’ ( p ) ] ( A - p ) - 1 2 0 [ F ( A ) - F ( f i ) ] = O .  (6.33a) 

Operating on both sides of  this equation by ( J 2 / J A d p ) ’ ,  we obtain the simple equation 

F” ( A )  - F ( p )  = o (6.336) 

whose solution is 

F ( A )  = a,A6+. . .+ a,A + a ,  (6.34) 

a 6 , .  . . , a, are arbitrary constants. It can be verified that (6.34) also satisfies (6.33a) 
and hence it is its only solutim. To complete the geometric side of the problem we 
write down the Gaussian curvature of the configuration space determined by (6.30) 
and (6.34): 

K = -- [2a,(A + p ) ( 2 A 2 +  A p + 2 p 2 ) +  a , ( 3 A 2 + 4 A ~ + 3 p 2 ) + 2 a 4 ( h  +p) + a,].  
1 

4E 
(6.35) 

Now, substituting (6.34) into (6.32) and integrating we get 

V =  - fJ2 [a , (A  +p)’+ a5(A + F ) ~ ] +  N ( A  + p) (6.36a) 

where N is a new integration constant. Also from (6.31) and (6 .6)  

= fJ(A - p) [2a , (A  + p)(2A2 + Ap + 2 p 2 )  

+ a5(3A2+4Ap+3p2)  +2a,(A + p ) +  a , ] .  (6.36b) 

Thus, choosing J, in the form (6.31) we have constructed an integrable system that 
depends on nine parameters. It is interesting to note that for the system under 
consideration 

0= -2€J(A - p ) ~  (6.37) 
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so that Cl vanishes together with the Gaussian curvature of the configuration space 
when a6 = a, = a4 = a, = 0. In that case the system degenerates into a Liouville one. If 
a3 # 0, aj = 0 for j > 3, and if (6.34) has three distinct real roots, then A, p can be 
interpreted as elliptic coordinates on the sphere. This result admits an interpretation 
as an integrable problem in the dynamics of a rigid body of complete dynamical 
symmetry in a liquid. 

The function (6.31) is the simplest polynomial solution of (6.6). It represents the 
Stokes' function of the flow due to an infinite uniform line-source. The following 
variations of this result in which $-is also a low-degree polynomial were obtained by 
trial. For each case we give $, V, Cl and the conditions on the coefficients in (6.34). 

(ii) a6= a, = a4 = 0 

$ J , ( A  -p12 

V=-2a3J,# 

fi = f ( A -  p)[6J,a3(h + p )  + J(a3+4a2)1. 

a6 = a, = a4 = a3 = 0 (iii) 

J, = J ( A + ~ ) +  J , (A  - p ) 2 + ~ 2 ( ~ + p ) ( ~  -p )2  

V = -4a,J,$ 

f i=2(A -p)[3JZa2(A+pL)+2a,J,+a,J,] .  

a6 = a, = a4= a, = a, = 0 

$= J ( A + ~ L ) + ( A - c L ) ~ [ J , + J ~ ( A + ~ L ) I  

V=-8a,J,$ 

(iv) 

(6.380) 

(6.386) 

( 6 . 3 8 ~ )  

(6.38d) 

(6.39a) 

(6.396) 

( 6 . 3 9 ~ )  

(6.394) 

(6.40a) 

(6.406) 

(6 .40~)  

fi = 4 ( A - p ) [ 3 J 3 a , ( A + p ) + 2 a , J 3 + a , J 2 ] .  (6.40d) 

Each of the last three systems involve six free parameters. For the last two systems 
(iii) and (iv) K = O .  They can be interpreted as cases of motion of a particle in the 
Euclidean plane referred to elliptic and parabolic coordinates, respectively. In both 
cases, the equations of motion in the original xy-plane have the form (5.15). We now 
give the functions V and R together with the form of the additional integral in the 
original Cartesian variables. 

Cl= 8[(J,+Jo)C2+3r2J,] (6.41a) 

V = -165,{[3J, + 2Jo)r2 -4( J ,  + Jo)x2+ Jr2]C4+ J l  r6 

In case (iii) we obtain the system for which 

+ [ (3J, + Jo)r2 - 4J,x2]C2r2 + ( I +  J ,  + J,)C"}. (6.416) 

This system has the integral 

t a,[>n T + A ~ T > ~  ) T L U ~ ( A  T p ) T  U , ) .  (b.3ODJ 

Thus, choosing J, in the form (6.31) we have constructed an integrable system that 
depends on nine parameters. It is interesting to note that for the system under 
consideration 

Cl= -2d(A - p ) ~  (6.37) 
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RI  = 4 { 4 C 6 [ ( 3 J , +  J o ) r 2 - 2 x 2 J , ] J - 2 ( 5 J ~ + 6 J , J , + 2 J ~ ) x ’  

+ ( 3 J 1  + 2J0)(3J, + Jo)r2]  + 2 C 4 [  (27J:+ 185, Jo+ 2 J 3 r 4  

- S ( 5  J ,  + 3 J,,) r2x2J,  + 3 Jr4J, + 8x4J:]  

+ 4 [ 3 ( 3 J , + J 0 ) r 2 -  10x2J, ]C2r4J,+9r8J:} .  

Similarly, in case (iv) we obtain the system for which 

0 = 2(6cbx - c,) 

V =  2c , [2c lx+2r2(c ,+  c,x -2c ,x2)  - c4r4] 

S= ( ~ j  - y X ) j  + P2i + Q2p +R2 

where 

P2 = -2y(c ,+ c3x -3c4x2-  cqy2)  

Q2 = cI + Z C , X +  c 3 ( 3 x 2 + y 2 )  - 2cax(5x2+ 3 y 2 )  

R2 = 2 [ c l x ( c 3  - 2 c , x ) +  r 2 [ ~ , ~ 3 - ~ I ~ 4 + ~ ( ~ ~ - 4 ~ 2 ~ 4 )  

+2c,x2(4c,x-3c,)]+c,r4(4c,x-c,)]. 

(6 .42a)  

( 6 . 4 2 b )  

( 6 . 4 2 ~ )  

I. Application to rigid body dynamics 

7.1. Reduction to the problem of plane motion of a particle 

The most general and well studied problem in the dynamics of rigid bodies is that of 
the motion of a rigid body hounded by a multiconnected surface in an infinite medium 
of ideal incompressible fluid. This problem contains as special cases the problems of 
motion of a rigid body (or a gyrostat) about a fixed point under the action of uniform 
or approximate Newtonian field of attraction. In its general form the problem is 
described by the set of Lamb‘s equations [21 which are not derived from a Lagrangian 
function. A slightly modified form used by Kharlamov and others (see e.g. [ 2 0 ] )  exhibit 
the same disadvantage. The same problem was investigated in detail in [ 4 ] ,  where it 
was transformed into a special version of the problem of motion of an electrically 
charged gyrostat about a fixed point under the action of a superposition of Newtonian, 
Coulomb and Lorentz’ forces which have a common axis of symmetry that passes 
through the fixed point. The last problem has the advantage of admitting equations 
of motion in the Lagrangian form, which are suitable for applying the method of the 
present work. We now proceed to write down the equations of motion of this problem 
and to make the necessary reduction to a system of two degrees of freedom. 

Let I=diag(A,  E, C) be the inertia matrix of the body at the fixed point, y =  
( y , ,  y 2 ,  y 3 )  a unit vector in the direction of the axis of symmetry of the fields and o 
the angular velocity of the body, all being referred to the system of principal axes of 
I, fixed in the body. Let also * be the angle of precession measured around the axis 
in the direction of y through the fixed point. 

The Lagrangian of the system under consideration can be written as 

L = f o I . w + m . w - V ,  ( 7 . 1 )  
where V, is a scalar potential and m is a vector function which characterizes gyroscopic, 
inertial and Lorentz’ forces. Both functions are independent of the angle 9. 
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As in [4(b)] the equations of motion of the system can be written in the Euler- 
Poisson form as 

(7.2a) 

y + w x y = o  (7.26) 

Vn oil+ w x ( w l +  M )  = y x- 
JY 

where 

(J: 

J 
M = - ( m . y ) -  - - . m  y 

JY 
(7.2~) 

As configuration variables in the Lagrangian (7.1) we shall use the redundant 
variables y , ,  y 2 ,  y,, 'P, subject to the obvious constraint 

y: + y:+ y: = 1. (7.3) 

w = @ y + N  (7.4) 

The angular velocity can be expressed in the form 

The angle 'P is a cyclic variable. The corresponding integral is 

( o l + m )  .y=constant=f:  

From (7.4) and (7.5) we get 

1 
D 

@ =- [ f - m .  y -  y l .  NI 

where 

D = y l .  y = Ay:+ By:+ Cy: .  

Ignoring 'P in (7.1) we construct the Routhian 

ABC y: y: y, 
2 D A B C  

R = - [ -+ -+ '1 + n . + - V 

where 

(f - m .  Y ) ~  
2 0  

v =  vn+ 

D 

(7.7a) 

(7.76) 

Now we introduce generalized coordinates on the sphere (7.3) that reduce the 
quadratic part of R in (7.7) to the Liouville form and hence reduce the equations of 
motion to the form (1.9). The transformation to these variables depends on the relative 
order of the parameters A, B and C. The case when these parameters are all different 
is discussed below. The case when only two of the moments are equal was found to 
he of no particular interest for our purpose here, since all known integrable problems 
with quadratic integrals in rigid body dynamics are in this case special versions Of 

others that are valid for A >  B > C. 
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7.2. The case of triaxial ellipsoid of inertia A # B # C 

In this case the substitution 

AC(A - B ) ( B  - p )  

(7.8) 

B C ( A - A ) ( A - p )  ' I 2  

( A - B ) ( B - C ) A p  

A > A > B r p P C  

( A -  B ) ( A -  C)Ap 1 Y , = (  

A B ( A - C ) ( p - C )  
( B -  C ) ( A - C ) A p  

together with the change of the independent variable 

d t  = a ( A  - p )  d7 

reduce the equations of motion to the form 

5 ' 2 +  7'2-2 U = 0 

where 

(7.9) 

(?.!!?a: 

(7.10b) 

[ f [ A +  B+ C -2(A+p)]+  SI 
4ABC 

n= 

a i  

ay 
s= D-  . y x ( y 1 x  4. 

(7.13) 

(7.14) 

The following obvious identities will be useful in simplifying the expression (7.13) in 
concrete cases and in identifying integrable cases: 

To identify integrable problems in rigid body dynamics among the cases of 
section 6 we have to look for systems for which, in accordance with (7.11), 

! 
ABC F ( A ) = -  A ' ( A - A ) ( A - B ) ( A  -c). (7.16) 

There are three cases that satisfy this requirement of which two coincide with two well 
known general integrable cases of the motion of an asymmetric body in a liquid, 

7.2.1. Reconstruction of Clebsch's case. The first case is that of section 6.2.1 if we set 

1 1 1  a - _  -+- 
a , = ]  '- ( A  B'Z)  

01 = b = a,= a ,  = O  

-1  
E = I  4 .  a -- 

' - A B C  
A + B + C  

ABC 
ad = 
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In this case the functions V, R are given by 

J ( A  -/NG [A+  B +  C - 2 ( h  +pj]. ZABC 
R =  

(7.17a) 

(7.176) 

These expressions coincide with (7.76) and (7.13) if in the first we introduce the change 
of parameters 

c =$AB&, f=- 2f  
ABC 

(7.18a) 

while in the latter we put 

ci. i86) 

Under the conditions (7.186) the equations of motion in the Euler-Poisson form 

(7.19) 

The last equations are well known as describing three physically different integrable 
problems in rigid body dynamics: 

(i) Clebsch's case of motion of a rigid body bounded by a simply connected surface 
in an infinite ideal incompressible fluid [21] (see [4(b)] for this form of the equations 
of motion). 

(ii) The problem of motion of a body about a fixed point under the action of the 
approximate field of a sufficiently distant Newtonain centre of attraction [22]. 

jiiij  Brun's probiem of motion of a body about a fixed point under the assumption 
that every element of the body is attracted to a fixed plane passing through the fixed 
point by a force that is proportional to the distance to that plane [23]. 

The general explicit solution of Clebschs equivalent of equations (7.19) has been 
obtained by Kotter [24] in terms of theta functions of two arguments. The special 
version f = 0 was solved earlier by Weber [XI. 

~ n e i c  is s i w  anuiner iriierpieiaiion inat ~eiurigb LU p a r i ~ ~ e  uy~rariusa. in I P C L ,  if 
we perform the transformation (6.29) we can immediately recognize the variables U, U 
as the ordinary elliptic coordinates on the ellipsoid Ax:+ Bx:+ Cx: = 1.The new system 
is just a particle that moves with Jacobi's constant - c  under the action of certain 
potential and Lorentz' forces. 

.. 1 m =O. y - A  0-*c ,D 

(7.2) can be written as 

&I + 0 x ad = c, y x yr  + + o x  y = o .  

_ _ _ ^  . ..:,. ._.. L..: _..__.. .L_. L.8 .__. L. ~ . . & _ . I .  1 :-- II- A---L 

22.2. The C.S. Oj-S!&!OU End R!?b.no.s$, n.e  second Of!h. kno\./r? integrah!e rases 
in the dynamics of a triaxial body is the case found in its simplest version by Steklov 
[26] for the simply connected body in a liquid. It was generalized by Kharlamov [27] 
and Rubanovsky [28] to the case o fa  multiconnected (perforated) body. The equations 
of motion can be written in the form (7.2) in which 

M = k +  uyl-'  V" = 0 (7.20) 

where k is a constant vector (the gyrostatic moment) and U is a constant scalar. From 
(7.2~) we get 

1 1 1  1 1  1 
B C'C A ' B  A 
-+- -+- -+- U (7.21) 
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and hence we obtain for the reduced system 

A C ( A - B ) ( B - p )  
( A  - B ) ( B -  C )  

1 B C ( A - A ) ( A - p )  ) ‘” -k2(  V = - [.fa- k, ( 
( A - B ) ( A -  C )  ZABC 

A B ( A - C ) ( p - C )  
-k3( ( E -  C)(A-  C )  

(7.22a) 

- kJA+ C -2(A + p)]yZ - kJA+ B -2(A + p) ]y3  

+y [ ( A +  B +  C ) ( A + p )  - 2 ( A 2 +  Ap+p2)] . (7.22b) 
2 b  I -  nes se expressions can be reconstructed From (6.266) and ( 6 . 2 6 ~ )  by taking a,=O 

as the double root of the polynomial F and setting 

a ,  = -I/ABC a , = A  a 2 = B  a3 = c J 4 = f l z  Js = u / 2  

J -  ’--1 k3( 
( A - C ) ( B - C )  

Thus, the system of section 6.2.3 is a generalization of Steklov-Rubanovsky’s case. 
The same case can equally be interpreted as a case of motion of an electrically charged 
body-gyrostat in a uniform magnetic field [4a, b ] .  If in the above formulae we put 
v = O  we obtain the case of an ordinary free gyrostat known after Joukovsky [29]. 

Explicit solution of Steklov’s case ( k  = 0, U # 0) was given by Kotter in terms of 
theta functions of two variables [ 3 O ] .  Joukovsky’s case (kZ0, u = O )  was solved in 
Weierstrass’ functions by Volterra [31] and in a simpler way in terms of Jacobi’s elliptic 
functions by Wittenburg [ 3 2 ] .  The case uk # 0 was not, as far as we know, considered. 

7.2.3. A new integrable case. The third case is obtained from that of section 6.3 by 
setting the coefficients in (6.34) so that F ( A )  is identical with (7.16). We then have 
from (6.36) 

J 2  
V = N ( A + p ) + -  2ABC (A  CL)^ (7.23a) 

a=- J ( A - p )  TAB+ AC+ CA -2!A+ A+ C)(A +,U) +3A2+4Ab+3,u2!. !7:23b) 2ABC L ~ - -  

Comparing with (7.7b) and (7.13) we realize that the present case is conditional. I t  
admits the quadratic integral only on the zero level of the parameterf: It is also possible 
to show that in the equivalent Euler-Poisson form we must have 

V, = Nu (7.24a) 

I +2(AB+BC+CA)  y-vyI-2ABCyI- ’  1 (7.246) 
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where 

A ( B  + C )  y: + B( C + A ) y : +  C ( A  + B )  y: 
U =  

AY:+ B ~ : +  CY: 

The problem admits a quadratic integral under the condition that the linear integral 
of areas 

[ A ( B  + C ) y : +  B( C + A)y:+ C ( A  + B)y:]  (7.25) 
J 

4" 01. y +  

is confined to its zero level. When J = 0, the present system degenerates into a Liouville 
one and a separation solution is possible as in section 3. 

Thus we have deduced as special cases of the results of section 6 the two known 
general integrable cases of rigid body dynamics and found a new conditional one. 
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